skip to main content


Search for: All records

Creators/Authors contains: "Garcia-Porta, Joan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Biologists have long noted that endotherms tend to have larger bodies (Bergmann’s rule) and shorter appendages (Allen’s rule) in colder environments. Nevertheless, many taxonomic groups appear not to conform to these ‘rules’, and general explanations for these frequent exceptions are currently lacking. Here we note that by combining complementary changes in body and extremity size, lineages could theoretically respond to thermal gradients with smaller changes in either trait than those predicted by either Bergmann’s or Allen’s rule alone. To test this idea, we leverage geographic, ecological, phylogenetic, and morphological data on 6,974 non-migratory terrestrial bird species, and show that stronger family-wide changes in bill size over thermal gradients are correlated with more muted changes in body size. Additionally, we show that most bird families exhibit weak but appropriately directed changes in both traits, supporting the notion of complementarity in Bergmann’s and Allen’s rules. Finally, we show that the few families that exhibit significant gradients in either bill or body size, tend to be more speciose, widely distributed, or ecologically constrained. Our findings validate Bergmann’s and Allen’s logic and remind us that body and bill size are simply convenient proxies for their true quantity of interest: the surface-to-volume ratio.

     
    more » « less
  2. Wiens, John (Ed.)
  3. Abstract

    The processes that allow some lineages to diversify rapidly at a global scale remain poorly understood. Although earlier studies emphasized the importance of dispersal, global expansions expose populations to novel environments and may also require adaptation and diversification across new niches. In this study, we investigated the contributions of these processes to the global radiation of crows and ravens (genusCorvus). Combining a new phylogeny with comprehensive phenotypic and climatic data, we show thatCorvusexperienced a massive expansion of the climatic niche that was coupled with a substantial increase in the rates of species and phenotypic diversification. The initiation of these processes coincided with the evolution of traits that promoted dispersal and niche expansion. Our findings suggest that rapid global radiations may be better understood as processes in which high dispersal abilities synergise with traits that, like cognition, facilitate persistence in new environments.

     
    more » « less
  4. Despite their miniature brains, insects exhibit substantial variation in brain size. Although the functional significance of this variation is increasingly recognized, research on whether differences in insect brain sizes are mainly the result of constraints or selective pressures has hardly been performed. Here, we address this gap by combining prospective and retrospective phylogenetic-based analyses of brain size for a major insect group, bees (superfamily Apoidea). Using a brain dataset of 93 species from North America and Europe, we found that body size was the single best predictor of brain size in bees. However, the analyses also revealed that substantial variation in brain size remained even when adjusting for body size. We consequently asked whether such variation in relative brain size might be explained by adaptive hypotheses. We found that ecologically specialized species with single generations have larger brains—relative to their body size—than generalist or multi-generation species, but we did not find an effect of sociality on relative brain size. Phylogenetic reconstruction further supported the existence of different adaptive optima for relative brain size in lineages differing in feeding specialization and reproductive strategy. Our findings shed new light on the evolution of the insect brain, highlighting the importance of ecological pressures over social factors and suggesting that these pressures are different from those previously found to influence brain evolution in other taxa. 
    more » « less
  5. Abstract

    The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such asTriceratops. Although ceratopsian frills vary in size, shape, and ornamentation, quantitative analyses that would allow for testing hypotheses of heterochrony are lacking. Here, we use geometric morphometrics to examine frill shape variation across ceratopsian diversity and within four species preserving growth series. We then test whether the frill constitutes an evolvable module both across and within species, and compare growth trajectories of taxa with ontogenetic growth series to identify heterochronic processes. Evolution of the ceratopsian frill consisted primarily of progressive expansion of its caudal and caudolateral margins, with morphospace occupation following taxonomic groups. Although taphonomic distortion represents a complicating factor, our data support modularity both across and within species. Peramorphosis played an important role in frill evolution, with acceleration operating early in neoceratopsian evolution followed by progenesis in later diverging cornosaurian ceratopsians. Peramorphic evolution of the ceratopsian frill may have been facilitated by the decoupling of this structure from the jaw musculature, an inference that predicts an expansion of morphospace occupation and higher evolutionary rates among ceratopsids as indeed borne out by our data. However, denser sampling of the meager record of early‐diverging taxa is required to test this further.

     
    more » « less